Massive MIMO Map Feb 2018 450

Dark blue: Building actively: China Mobile, Softbank Japan, Bharti India, Jio India, Vodafone India, Singtel, Globe Phillippines, Sprint USA

Medium: Announced: DT, FT/Orange, BT, Qatar, Verizon USA, T-Mobile Netherlands, Telekom South Africa  

Light blue: Talking: Vodafone England, Vodafone Turkey,
Safaricom Kenya, 

Why are Bharti, Jio & Vodafone Spending $B's on Massive MIMO?

Competition is fierce and spectrum is short, Reliance Jio spent $20B, built one of the best networks in the world, and gained 100M customers in the first year. Mukesh Ambani's aggressive plans for the 4G $20 (refundable) feature phone will probably add 100M more in the next year or so. Hundreds of millions of Indians are still on 2G. Ambani is ready to spend $B+ in subsidies to bring them to Jio 4G. 

Giant Tata is closing their #4 mobile network, putting 10,000 out of work, writing off billions, and selling off cheaply to Bharti.. #5 Reliance Communications, Ambani's brother's company, is likely to follow. They couldn't compete in the price war. Vodafone and Idea, #2 & #3, are merging to stay alive  

#1 Bharti's strategy in response includes a huge build of Massive MIMO, just announced. Danish Khan now reports the other two likely survivors, Jio and Vodafone/Idea, will also do Massive.

Read more ...

M MIMO from UnicampEricsson: FDD Massive MIMO Cell Shaping Reaching the Field

Tom Marzetta and other researchers have been very skeptical about the performance of Massive MIMO using FDD rather than TDD (Time Division.) M MIMO requires regular and robust reporting from the cell phone, which they feared would be impractical with FDD. Huawei, ZTE, and now Ericsson have done field trials they believe prove otherwise.  

In trial with T-Mobile. Nishant Batra is confident many antenna Massive MIMO will add to performance in FDD frequencies as well as the TDD frequencies beginning to widely deploy. While the performance gain may not be exponential, directing the beam significantly increases capacity even in FDD systems. 

Batra expects 3 carrier, 60 MHz TDD Massive MIMO in early 2018. He didn't provide performance estimates, but that class of technology should provide double or better the effective capacity of the "Gigabit LTE" now deploying. More at Wirelessone.news

Peiyiing Zhu

Achievable: Drastic drop in bad cell phone connections. Massive MIMO - 64 or more antennas - can dramatically improve edge performance by "beam forming," directing the signal where the users are. Done well, it can dramatically improve the performance where it's weaker. Hidebumi Kitahara of Softbank told me that is working very well and will get better as software improves. See "I am crazy about Massive MIMO," Kitihara of Softbank ordering 1,000's of Massive MIMO bases

Robert Clark of Light Reading reports Kitahara intends to use the capacity to improve performance for all users. "We don't care about peak throughput. We want to minimize the low throughput, which is between 1 Mbit/s and 5 Mbit/s." Clark adds, "At those speeds, the network will struggle to deliver a good video experience. Prior to deployment, around 20% of all users were experiencing throughput below 2 Mbit/s." Kitahara reveals, "only a few percent," now receive low speeds.

Read more ...

Massive Map 300October, 2017 
Dark Blue = Volume
China Mobile, Softbank Japan Bharti India 
Mid = Begun
Global Philippines, Singtel
Light = Firmly announced
Hutchinson Austria, Sprint U.S.A., Vodafone 

 

 

 

 

MM depends on receiving back from the phone information on the channel. That uplink information has practical limitations on many cases, including from interference. In this paper, Bjornson, Hoydis, and Sanguinetti take on the assumption that there is a theoretical limit of spectral efficiency. Beginning with Marzetta, potential problems have been recognized.

"The pilot resources are limited by the channel coherence time, the same pilots must be reused in multiple cells. This leads to pilot contamination. ... it appears that pilot contamination is a fundamental issue that manifests a finite SE limit, except in some impractical special cases."

In 30 page dense with mathematics, the authors claim, "We will show in this paper that this is basically a misunderstanding, 

Read more ...

Massive MIMO 20 MHzTDD Massive MIMO is already going wide at SoftBank Japan, yielding a 4x-10x capacity improvement on a single channel. Eric Zhao believes Massive MIMO is often the right choice where you need high capacity. Zhao finds early 32 antenna system averaging 450% more capacity in a single band. Many leading engineers agree MM is the way to go.

Worldwide, chief technologists are enthusiastic about Massive MIMO. At Huawei's MBB Forum, Hidebumi Kitahara of SoftBank confirmed the reported results, especially in crowded cells. Later in the day, Huang Yuhong of China Mobile also reported success. Her performance improvement estimates were "only" 3x, but it's early days for the technology.  At SoftBank owned Sprint, G√ľnther Ottendorfer reports a 10x improvement. Sanyogita Shamsunder of Verizon a year ago told me, "We must have massive MIMO." Nasser Al Nasser of Saudi Telecom in the release below reports a 6x improvement.

Read more ...

The Site for Massive 230
dave ask

Massive MIMO is rapidly deploying across the world; Soon, I'll be adding many more countries to the Massive MIMO map. On average, adding 64 or 128 antennas triples the performance of the cell site at moderate cost. Ericsson, Huawei, and ZTE are shipping by the thousands.

Being a reporter is a great job for a geek. I'm not an engineer but I've learned from some of the best, including the primary inventors of DSL, cable modems, MIMO, Massive MIMO, and now 5G mmWave. Since 1999, I've done my best to get closer to the truth about broadband.

Send questions and news to Dave Burstein, Editor.